Archives for posts with tag: modelling

Due to increasing use of domain specific languages (DSLs), declarative style of modeling is quetly spreading among users of MDE tools. Indeed, it is easy to find examples of declarative DSLs, e.g. at DSM Forums or this blog. There is however a group of users, among which the delarative style of modeling has not managed to spread – transformation developers. I am not sure if it has something todo with the group itself or with the fact that the majority of today’s transformation definition languages (TDL) are still more imperative in style (I am aware of QVT Relations and ATL, but these are rather exceptions than the norm).

There are quite a few good reasons why one would consider using a declarative language for transformation definition: reduction of information content in transformation definitions (and hence higher productivity of transformation developers), more agile DSL evolution, transformation definitions as models, higher compatibility with parallel computing, etc..

Today I would like to share some practical results that illustrate reduction of information content due to use of a declarative language.

CHART vs. Java

The following examples are kindly provided by Maarten de Mol and Arend Rensink from University of Twente. In CHARTER project, they are working on certifiable transformation technology for development of safety-critical embedded systems.

Before proceeding to the examples, here are a few relevant highlights of their technology:

  • Partially declarative transformation definition language (CHART): based on graph transformation and intended to be useable by Java programmers.
  • Transformation compiler (RDT): given a transformation definition written in CHART, generates its executable implementation in Java. The produced code runs against and transforms user provided data.

Figures 1 and 2 present transformation rules findRich and addPicture respectively. Each figure shows its rule written both in CHART and Java. The important Java methods are match() and update(), which are the translations of the similarly named blocks in CHARTER rules. 


Figure 1: Rule findRich written in CHART (a) and Java (b)

In Figure 1a, a match block counts 10 LOC against 41 LOC in Java (Figure 1b), which constitutes a reduction of information content by 75%.


Figure 2: Rule addPicture written in CHART (a) and Java (b)

In Figure 2a, an update block counts 12 LOC against 65 LOC in Java, an 80% reduction.

Both examples show significant reduction of information content in CHART rules. The reduction is even stronger if one takes into account that Java implementations also have to address technical concerns, which do not exist in CHART rules. In this case reduction is 92% (13 LOC vs. 160 LOC for rule findRich).

In experence of another CHARTER partner, who evaluates CHART/RDT in practice, a CHART transformation definition counted 1024 lines of code against 8000 in Java, an 87% reduction of information content [1]. Author’s own industrial experiences elsewhere with AToM3 GG rules (declarative) and QVT Operational (imperative) agree with the above results as well.

While exact reduction numbers are certainly arguable, the overal trend in the above experiences is that use of a declarative TDL can result in dramatic reduction of information content and manyfold increase of development productivity.


Despite industrial successes of MDE (which are often hidden), it is my experience that model-driven methods have hard times keeping up as organizations evolve. One factor behing this lag is slow speed of transformation development. Practical industrial experiences such as above, show that declarative languages have potential to significantly improve agility of transformation development.

What are your experiences with declarative TDLs and agile language development? Can you share concrete examples or provide references to declarative TDLs?


[1] de Mol, M.J. and Rensink, A. and Hunt, J.J. (2012) Graph Transforming Java Data. In: Proceedings of the 15th International Conference on Fundamental Approaches to Software Engineering (FASE 2012), 26-29 Mar 2012, Talinn, Estonia. Lecture Notes in Computer Science. Springer Verlag.

While effort reduction and quality increase are both commonly recognized benefits of MDE, the former particularly has become its trademark, thanks to numerous generative uses in model-driven software development (MDSD). Examples include generation of code and configurations from models written in UML, DSLs and XML.


Figure: The effort in MDE approach with partial manual coding (adapted from [1])

The generative MDE automates well defined routine activities. An effective metric of depicting economical benefit thereof is effort. The above figure illustrates effort reduction due to automation and reuse in an MDE approach with partial manual coding. Of cause, the generative MDE improves quality as well: error reduction, enforced architecture conformance, and up-to-date documentation are common factors that have positive effect on software quality. But usually these are considered as icing on the cake that is effort reduction. In my experience this perspective on the economical value of MDE is common among both customers and MDE professionals. The perspective can be summarized as “the same with less”.

More with the same

Recently a client tasked me together with its domain experts to assess benefits of applying MDE to a difficult process within the organization. Having analyzed the before and after situations, we came up with estimated economical benefit expressed in effort savings. The estimate was hard to quantify, but “should” have been OK. Although I wanted to share this optimism, I felt that in practice the effort saving would be negligible if not even negative. This paradox was due to the fact that the largest activity in the problem domain was inherently creative and exploratory. 

In the figure, the output of a single exploration in this activity is shown as intermediate result, corresponding to line ad. As the figure suggests, code generation directly from the output is not possible (this happens further downstream in development). You may have noticed that the modelling curve rises more steeply towards point a. This rise occurs because modelling requires increased level of domain understanding and more information is needed by semantically rich operations, such as simulation, verification, code generation (eventually), etc. On the other hand, the figure shows effort reduction indicated by distance cd, which is the result of providing end users with proper abstractions, faster access to right knowledge, separation of concerns, DRY modelling, maintained consistency and integrity.

While working efficiency per exploration is likely to  increase (compare ab and cd), the leading concern is quality of the output. Here benefits are early detection of design errors, deep exploration of design choices, better communication and documentation, maximized reuse of domain-specific platforms in further development. Moreover, the domain experts noted that any saved effort would be re-invested in more alternative explorations in search of a more optimal output. This increased number of explorations, is likely to balance out any savings due to higher efficiency.

With these insights, economical benefits were expressed with quality metrics and linked to different business goals than initially thought.


The described MDE assessment targets a highly creative engineering activity that explores alternative choices. In extreme case, the main benefit is not effort reduction, but increased product and process quality. The icing on the cake is that processable models can open opportunities for generative uses as well.

In my experience, such and certainly less extreme quality-driven cases are not exotic. In recent years, quite a few MDE projects I’ve participated in, had benefits strongly linked to quality improvement. What are your MDE experiences with creative activities? What were the economical benefits and how were they conveyed?


[1] Thomas Stahl, Markus Voelter, Krzysztof Czarnecki. “Model-Driven Software Development: Technology, Engineering, Management”. Wiley; 1 edition (May 19, 2006)